Package: glmtrans 2.1.0
glmtrans: Transfer Learning under Regularized Generalized Linear Models
We provide an efficient implementation for two-step multi-source transfer learning algorithms in high-dimensional generalized linear models (GLMs). The elastic-net penalized GLM with three popular families, including linear, logistic and Poisson regression models, can be fitted. To avoid negative transfer, a transferable source detection algorithm is proposed. We also provides visualization for the transferable source detection results. The details of methods can be found in "Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. Journal of the American Statistical Association, 118(544), 2684-2697.".
Authors:
glmtrans_2.1.0.tar.gz
glmtrans_2.1.0.zip(r-4.5)glmtrans_2.1.0.zip(r-4.4)glmtrans_2.1.0.zip(r-4.3)
glmtrans_2.1.0.tgz(r-4.5-any)glmtrans_2.1.0.tgz(r-4.4-any)glmtrans_2.1.0.tgz(r-4.3-any)
glmtrans_2.1.0.tar.gz(r-4.5-noble)glmtrans_2.1.0.tar.gz(r-4.4-noble)
glmtrans_2.1.0.tgz(r-4.4-emscripten)glmtrans_2.1.0.tgz(r-4.3-emscripten)
glmtrans.pdf |glmtrans.html✨
glmtrans/json (API)
# Install 'glmtrans' in R: |
install.packages('glmtrans', repos = c('https://ytstat.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 months agofrom:c27f1f5f3a. Checks:1 OK, 8 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 31 2025 |
R-4.5-win | WARNING | Mar 31 2025 |
R-4.5-mac | WARNING | Mar 31 2025 |
R-4.5-linux | WARNING | Mar 31 2025 |
R-4.4-win | WARNING | Mar 31 2025 |
R-4.4-mac | WARNING | Mar 31 2025 |
R-4.4-linux | WARNING | Mar 31 2025 |
R-4.3-win | WARNING | Mar 31 2025 |
R-4.3-mac | WARNING | Mar 31 2025 |
Exports:glmtransglmtrans_infmodelssource_detection
Dependencies:assertthatcaretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdoParalleldplyre1071fansifarverforeachformatRfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppEigenrecipesreshape2rlangrpartscalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Fit a transfer learning generalized linear model (GLM) with elasticnet regularization. | glmtrans |
Calculate asymptotic confidence intervals based on desparsified Lasso and two-step transfer learning method. | glmtrans_inf |
Generate data from Gaussian, logistic and Poisson models. | models |
Visualize the losses of different sources and the threshold to determine transferability. | plot.glmtrans plot.glmtrans_source_detection |
Predict for new data from a "glmtrans" object. | predict.glmtrans |
Print a fitted "glmtrans" object. | print.glmtrans |
Transferable source detection for GLM transfer learning algorithm. | source_detection |