Package 'pemultinom'

Title: L1-Penalized Multinomial Regression with Statistical Inference
Description: We aim for fitting a multinomial regression model with Lasso penalty and doing statistical inference (calculating confidence intervals of coefficients and p-values for individual variables). It implements 1) the coordinate descent algorithm to fit an l1-penalized multinomial regression model (parameterized with a reference level); 2) the debiasing approach to obtain the inference results, which is described in Tian et al. (2023) <arXiv:2302.02310>.
Authors: Ye Tian [aut, cre], Henry Rusinek [aut], Arjun V. Masurkar [aut], Yang Feng [aut]
Maintainer: Ye Tian <[email protected]>
License: GPL-2
Version: 0.1.0
Built: 2025-02-05 03:40:33 UTC
Source: https://github.com/cran/pemultinom

Help Index


Fit a multinomial regression model with Lasso penalty.

Description

Fit a multinomial regression model with Lasso penalty. This function implements the l1-penalized multinomial regression model (parameterized with a reference level). A cross-validation procedure is applied to choose the tuning parameter. See Tian et al. (2023) for details.

Usage

cv.pemultinom(
  x,
  y,
  ref = NULL,
  nfolds = 5,
  nlambda = 100,
  max_iter = 200,
  tol = 0.001,
  ncores = 1,
  standardized = TRUE,
  weights = NULL
)

Arguments

x

the design/predictor matrix, each row of which is an observation vector.

y

the response variable. Can be of one type from factor/integer/character.

ref

the reference level. Default = NULL, which sets the reference level to the last category (sorted by alphabetical order)

nfolds

the number of cross-validation folds to use. Default = 5.

nlambda

the number of penalty parameter candidates. Default = 100.

max_iter

the maximum iteration rounds in each iteration of the coordinate descent algorithm. Default = 200.

tol

convergence threshold (tolerance level) for coordinate descent. Default = 1e-3.

ncores

the number of cores to use for parallel computing. Default = 1.

standardized

logical flag for x variable standardization, prior to fitting the model sequence. Default = TRUE. Note that the fitting results will be translated to the original scale before output.

weights

observation weights. Should be a vector of non-negative numbers of length n (the number of observations). Default = NULL, which sets equal weights for all observations.

Value

A list with the following components.

beta.list

the estimates of coefficients. It is a list of which the k-th component is the contrast coefficient between class k and the reference class corresponding to different lambda values. The j-th column of each list component corresponds to the j-th lambda value.

beta.1se

the coefficient estimate corresponding to lambda.1se. It is a matrix, and the k-th column is the contrast coefficient between class k and the reference class.

beta.min

the coefficient estimate corresponding to lambda.min. It is a matrix, and the k-th column is the contrast coefficient between class k and the reference class.

lambda.1se

the largest value of lambda such that error is within 1 standard error of the minimum. See Chapter 2.3 of Hastie et al. (2015) for more details.

lambda.min

the value of lambda that gives minimum cvm.

cvm

the weights in objective function.

cvsd

the estimated marginal probability for each class.

lambda

lambda values considered in the cross-validation process.

References

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity. Monographs on statistics and applied probability, 143.

Tian, Y., Rusinek, H., Masurkar, A. V., & Feng, Y. (2023). L1-penalized Multinomial Regression: Estimation, inference, and prediction, with an application to risk factor identification for different dementia subtypes. arXiv preprint arXiv:2302.02310.

See Also

debiased_lasso, predict_pemultinom.

Examples

# generate data from Model 1 in Tian et al. (2023) with n = 50 and p = 50
set.seed(0, kind = "L'Ecuyer-CMRG")
n <- 50
p <- 50
K <- 3

Sigma <- outer(1:p, 1:p, function(x,y) {
  0.9^(abs(x-y))
})
R <- chol(Sigma)
s <- 3
beta_coef <- matrix(0, nrow = p+1, ncol = K-1)
beta_coef[1+1:s, 1] <- c(1.5, 1.5, 1.5)
beta_coef[1+1:s+s, 2] <- c(1.5, 1.5, 1.5)

x <- matrix(rnorm(n*p), ncol = p) %*% R
y <- sapply(1:n, function(j){
  prob_i <- c(sapply(1:(K-1), function(k){
    exp(sum(x[j, ]*beta_coef[-1, k]))
  }), 1)
  prob_i <- prob_i/sum(prob_i)
  sample(1:K, size = 1, replace = TRUE, prob = prob_i)
})

# fit the l1-penalized multinomial regression model
fit <- cv.pemultinom(x, y, ncores = 2)
beta <- fit$beta.min

# generate test data from the same model
x.test <- matrix(rnorm(n*p), ncol = p) %*% R
y.test <- sapply(1:n, function(j){
  prob_i <- c(sapply(1:(K-1), function(k){
    exp(sum(x.test[j, ]*beta_coef[-1, k]))
  }), 1)
  prob_i <- prob_i/sum(prob_i)
  sample(1:K, size = 1, replace = TRUE, prob = prob_i)
})

# predict labels of test data and calculate the misclassification error rate (using beta.min)
ypred.min <- predict_pemultinom(fit$beta.min, ref = 3, xnew = x.test, type = "class")
mean(ypred.min != y.test)

# predict labels of test data and calculate the misclassification error rate (using beta.1se)
ypred.1se <- predict_pemultinom(fit$beta.1se, ref = 3, xnew = x.test, type = "class")
mean(ypred.1se != y.test)

# predict posterior probabilities of test data
ypred.prob <- predict_pemultinom(fit$beta.min, ref = 3, xnew = x.test, type = "prob")

Doing statistical inference on l1-penalized multinomial regression via debiased Lasso (or desparisified Lasso).

Description

Doing statistical inference on l1-penalized multinomial regression via debiased Lasso (or desparisified Lasso). This function implements the algorithm described in Tian et al. (2023), which is an extension of the original debiased Lasso (Van de Geer et al. (2014); Zhang and Zhang (2014)) to the multinomial case.

Usage

debiased_lasso(
  x,
  y,
  ref = NULL,
  beta,
  nfolds = 5,
  ncores = 1,
  nlambda = 50,
  max_iter = 200,
  tol = 0.001,
  lambda.choice = "lambda.min",
  alpha = 0.05
)

Arguments

x

the design/predictor matrix, each row of which is an observation vector.

y

the response variable. Can be of one type from factor/integer/character.

ref

the reference level. Default = NULL, which sets the same reference level as used in obtaining beta. Even when the user inputs ref manually, it should be always the same reference level as used in obtaining beta.

beta

the beta estimate from l1-penalized multinomial regression. Should be in the same format as beta.min or beta.1se in output of function cv.pemultinom. The user is recommended to directly pass beta.min or beta.1se from the output of function cv.pemultinom to parameter beta.

nfolds

the number of cross-validation folds to use. Cross-validation is used to determine the best tuning parameter lambda in the nodewise regression, i.e., Algorithm 2 in Tian et al. (2023). Default = 5.

ncores

the number of cores to use for parallel computing. Default = 1.

nlambda

the number of penalty parameter candidates in the cross-validation procedure. Cross-validation is used to determine the best tuning parameter lambda in the nodewise regression, i.e., Algorithm 2 in Tian et al. (2023). Default = 100.

max_iter

the maximum iteration rounds in each iteration of the coordinate descent algorithm. Default = 200.

tol

convergence threshold (tolerance level) for coordinate descent. Default = 1e-3.

lambda.choice

observation weights. Should be a vector of non-negative numbers of length n (the number of observations). Default = NULL, which sets equal weights for all observations.

alpha

significance level used in the output confidence interval. Has to be a number between 0 and 1. Default = 0.05.

Value

A list of data frames, each of which contains the inference results for each class (v.s. the reference class). In the data frame, each row represents a variable. The columns include:

beta

the debiased point estimate of the coefficient

p_value

p value of each variable

CI_lower

lower endpoint of the confidence interval for each coefficient

CI_upper

upper endpoint of the confidence interval for each coefficient

std_dev

the estimated standard deviation of each component of beta estimate

References

Tian, Y., Rusinek, H., Masurkar, A. V., & Feng, Y. (2023). L1-penalized Multinomial Regression: Estimation, inference, and prediction, with an application to risk factor identification for different dementia subtypes. arXiv preprint arXiv:2302.02310.

Van de Geer, S., Bühlmann, P., Ritov, Y. A., & Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3), 1166-1202.

Zhang, C. H., & Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 217-242.

See Also

cv.pemultinom, predict_pemultinom.

Examples

# generate data from Model 1 in Tian et al. (2023) with n = 100 and p = 50
set.seed(0, kind = "L'Ecuyer-CMRG")
n <- 50
p <- 50
K <- 3

Sigma <- outer(1:p, 1:p, function(x,y) {
  0.9^(abs(x-y))
})
R <- chol(Sigma)
s <- 3
beta_coef <- matrix(0, nrow = p+1, ncol = K-1)
beta_coef[1+1:s, 1] <- c(1.5, 1.5, 1.5)
beta_coef[1+1:s+s, 2] <- c(1.5, 1.5, 1.5)

x <- matrix(rnorm(n*p), ncol = p) %*% R
y <- sapply(1:n, function(j){
  prob_i <- c(sapply(1:(K-1), function(k){
    exp(sum(x[j, ]*beta_coef[-1, k]))
  }), 1)
  prob_i <- prob_i/sum(prob_i)
  sample(1:K, size = 1, replace = TRUE, prob = prob_i)
})

# fit the l1-penalized multinomial regression model
fit <- cv.pemultinom(x, y, ncores = 2)
beta <- fit$beta.min

# run the debiasing approach
fit_debiased <- debiased_lasso(x, y, beta = beta, ncores = 2)

Make predictions on new predictors based on fitted l1-penalized multinomial regression model.

Description

Make predictions on new predictors based on fitted l1-penalized multinomial regression model, by using the fitted beta.

Usage

predict_pemultinom(beta, ref, xnew, type = c("class", "prob"))

Arguments

beta

the beta estimate from l1-penalized multinomial regression. Should be in the same format as beta.min or beta.1se in output of function cv.pemultinom. The user is recommended to directly pass beta.min or beta.1se from the output of function cv.pemultinom to parameter beta.

ref

the reference level, which should be the same reference level as used in obtaining beta. An input is required.

xnew

new observations to predict labels for. Should be a matrix or a data frame, where each row and column represents an observation and predictor, respectively.

type

the type of prediction output. Can be 'class' or 'prob'. Default = 'class'.

  • class: the predicted class/label.

  • prob: the predicted probability for each class.

Value

When type = 'class', return a vector. When type = 'prob', return a matrix where each row and column represent an observation and a probability of that class, respectively. Default = 'class'.

References

Tian, Y., Rusinek, H., Masurkar, A. V., & Feng, Y. (2023). L1-penalized Multinomial Regression: Estimation, inference, and prediction, with an application to risk factor identification for different dementia subtypes. arXiv preprint arXiv:2302.02310.

See Also

cv.pemultinom, debiased_lasso.

Examples

# generate training data from Model 1 in Tian et al. (2023) with n = 50 and p = 50
set.seed(1, kind = "L'Ecuyer-CMRG")
n <- 50
p <- 50
K <- 3

Sigma <- outer(1:p, 1:p, function(x,y) {
  0.9^(abs(x-y))
})
R <- chol(Sigma)
s <- 3
beta_coef <- matrix(0, nrow = p+1, ncol = K-1)
beta_coef[1+1:s, 1] <- c(1.5, 1.5, 1.5)
beta_coef[1+1:s+s, 2] <- c(1.5, 1.5, 1.5)

x <- matrix(rnorm(n*p), ncol = p) %*% R
y <- sapply(1:n, function(j){
  prob_i <- c(sapply(1:(K-1), function(k){
    exp(sum(x[j, ]*beta_coef[-1, k]))
  }), 1)
  prob_i <- prob_i/sum(prob_i)
  sample(1:K, size = 1, replace = TRUE, prob = prob_i)
})

# fit the l1-penalized multinomial regression model
fit <- cv.pemultinom(x, y, ncores = 2)

# generate test data from the same model
x.test <- matrix(rnorm(n*p), ncol = p) %*% R
y.test <- sapply(1:n, function(j){
  prob_i <- c(sapply(1:(K-1), function(k){
    exp(sum(x.test[j, ]*beta_coef[-1, k]))
  }), 1)
  prob_i <- prob_i/sum(prob_i)
  sample(1:K, size = 1, replace = TRUE, prob = prob_i)
})

# predict labels of test data and calculate the misclassification error rate (using beta.min)
ypred.min <- predict_pemultinom(fit$beta.min, ref = 3, xnew = x.test, type = "class")
mean(ypred.min != y.test)

# predict labels of test data and calculate the misclassification error rate (using beta.1se)
ypred.1se <- predict_pemultinom(fit$beta.1se, ref = 3, xnew = x.test, type = "class")
mean(ypred.1se != y.test)

# predict posterior probabilities of test data
ypred.prob <- predict_pemultinom(fit$beta.min, ref = 3, xnew = x.test, type = "prob")